Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson's disease.
نویسندگان
چکیده
Although evidence of damage-directed neural stem cell (NSC) migration has been well-documented in the rodent, to our knowledge it has never been confirmed or quantified using human NSC (hNSC) in an adult non-human primate modeling a human neurodegenerative disease state. In this report, we attempt to provide that confirmation, potentially advancing basic stem cell concepts toward clinical relevance. hNSCs were implanted into the caudate nucleus (bilaterally) and substantia nigra (unilaterally) of 7, adult St. Kitts African green monkeys (Chlorocebus sabaeus) with previous exposure to systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that disrupts the dopaminergic nigrostriatal pathway. A detailed quantitative analysis of hNSC migration patterns at two time points (4 and 7 months) following transplantation was performed. Density contour mapping of hNSCs along the dorsal-ventral and medial-lateral axes of the brain suggested that >80% of hNSCs migrated from the point of implantation to and along the impaired nigrostriatal pathway. Although 2/3 of hNSCs were transplanted within the caudate, <1% of 3x10(6) total injected donor cells were identified at this site. The migrating hNSC did not appear to be pursuing a neuronal lineage. In the striatum and nigrostriatal pathway, but not in the substantia nigra, some hNSCs were found to have taken a glial lineage. The property of neural stem cells to align themselves along a neural pathway rendered dysfunctional by a given disease is potentially a valuable clinical tool.
منابع مشابه
P111: Effect of Human Neural Stem Cells on Neural Hyperactivity in Kindeling Rat Models
The excessive electrical activity of neurons is reported in many diseases including: Parkinson's disease, Alzheimer's disease, and Epilepsy. Electrical overactivity in hippocampus accelerates the depletion of neural stem cell (NSC) and impairs the neurogenesis in hippocampus. It is believed that neurogenesis in hippocampus improves the cognitive functions. In this experiment, we use kindled mod...
متن کاملکاربرد سلول های بنیادی در درمان بیماری پارکینسون
Stem cells are undifferentiated cells with the ability to divide and differentiate into distinct cell types. The source of these cells is from embryos and adults, that each cell has its own specific characteristics. For nearly decades, experimental studies have been conducted to use these types of cells to treat various diseases. Parkinson's disease is one of the most common neurodegenerative d...
متن کاملImprovement in Signs of Parkinson's Disease in Rats Following Transplantation of Embryonic Stem Cells
Purpose: Parkinson's disease is a degenerative disease produced by the death of dopaminergic neurons, and the response to current treatments is varied. It is important to develop a model for the evaluation of ES cells as an alternative model for treatment. Materials and Methods: The model for PD was developed in rats. First, ES cells were transplanted into experimental models in three groups: ...
متن کاملP-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملPotential of Neural Stem Cell-Based Therapy for Parkinson's Disease
Neural stem cell (NSC) transplantation is an emerging strategy for restoring neuronal function in neurological disorders, such as Parkinson's disease (PD), which is characterized by a profound and selective loss of nigrostriatal dopaminergic (DA) neurons. Adult neurogenesis generates newborn neurons that can be observed at specialized niches where endothelial cells (ECs) play a significant role...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental neurology
دوره 211 2 شماره
صفحات -
تاریخ انتشار 2008